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Abstract

When analysing the performance of hydrological models, researchers use a number
of diverse statistics. Although some statistics appear to be used more regularly in
such analyses than others, there is a distinct lack of consistency in evaluation, mak-
ing studies undertaken by different authors or performed at different locations difficult5

to compare in a meaningful manner. Moreover, even within individual reported case
studies, substantial contradictions are found to occur between one measure of perfor-
mance and another. In this paper we examine the Ideal Point Error (IPE) metric – a
recently introduced measure of model performance that integrates a number of recog-
nised metrics in a logical way. Having a single, integrated measure of performance is10

appealing as it should permit more straightforward model inter-comparisons. However,
IPE relies on the adoption of a consistent and recognised benchmarking system. This
paper examines one potential option for benchmarking IPE: the use of “persistence
scenarios”.

1 Introduction15

Schaefli and Gupta (2007) stressed that hydrological model evaluation metrics were im-
portant, not only as an integral part of model development and calibration processes,
but also as a means of communicating results to scientists, stakeholders and other
end-users. It is, therefore, vital that researchers provide adequate clarification of what
the specific values of different performance measures really mean in the context of their20

models. This task is made particularly complex by the fact that there is a wide range
of potential sources of error in hydrological models that impact differently on different
performance metrics (Criss and Winston, 2008; Willems, 2012), and that a host of dif-
ferent model evaluation metrics could be applied to a particular solution (Elshorbagy,
et al., 2000). Indeed, there is often little consistency in how they are adopted from one25

study to another (Legates and McCabe, 1999), and some have argued that the choice
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of evaluation metrics used is often simply a result of the provision of such metrics in
modelling software packages (Chiew and McMahon, 1993). As Hall (2001) pointed
out; “Ideally, the modeller would wish to express the goodness-of-fit of the model to the
data in terms of a single index or objective function.” Although researchers have ac-
knowledged the importance of multi-criteria performance analysis (for example, Mas-5

moudi and Habaieb, 1993; Weglarczyk, 1998; Willems, 2009) developments in the
integration of multiple error measures into a single measure of hydrological model per-
formance have only recently received attention.

Gupta et al. (2009) proposed a three dimensional combinatorial metric that delivered
a dimensionless coefficient: the “Kling–Gupta Efficiency Index” (KGE). This metric rep-10

resents an evolution of the long-established Nash-Sutcliffe Index (Nash and Sutcliffe,
1970), and delivers a measure of Euclidean distance from a point of ideal error, based
upon the model’s deviation from the mean and standard deviation of the observed data
series. Their metric can be calculated using either un-weighted or re-scalable equa-
tions; offering the potential to fine-tune the metric so that it responds more or less15

strongly to different error types. More recently, Elshorbagy et al. (2010a, b) proposed
the Ideal Point Error (IPE). This metric builds upon Gupta et al.’s idea of quantifying
the distance from an ideal point of error. However, it is based upon the deviation of
a model’s multiple goodness-of-fit metrics from their “perfect” scores, rather than sta-
tistical measures of deviation. This arguably results in a more flexible evaluation tool20

that can integrate a wider range of metrics and that makes no assumptions about the
statistical distributions of error in a given model. IPE delivers one composite index that
can be used as a standalone assessment of model performance, or as a supplemental
measure which could support the interpretation of other modelling statistics and/or be
of help during a visual inspection of hydrograph error plots. However, limited discussion25

and evaluation of selection and integration procedures were provided in the original ar-
ticle resulting in numerous unanswered questions about which metrics to choose and
how the IPE output is impacted by the particular composition and distribution of the
errors in the suite of models under test.
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In response, this paper undertakes a more detailed assessment of the limitations
and opportunities associated with IPE-based model evaluation by:

1. revisiting the method of Elshorbagy et al. (2010a, b) and developing general rules
for error metric inclusion in IPE, together with a simple variant equation that avoids
several numerical problems encountered when applying the original;5

2. assessing the output consistency of the original IPE equation, the variant outlined
above and the variant proposed by Dominguez et al. (2011);

3. suggesting an additional variant of IPE that uses a standardisation approach in
which the metrics for each model are evaluated relative to a consistent, naive
model benchmark.10

Individual statistics in this paper were calculated using HydroTest (www.hydrotest.
org.uk): a standardised, open access website that performs the required numerical cal-
culations (Dawson et al., 2007, 2010). Equations and sources for the different metrics
are provided in its related papers and web pages. The following abbreviations are em-
ployed in this paper: Root Mean Squared Error (RMSE), Mean Average Relative Error15

(MARE), Mean Error (ME), correlation coefficient (R), R-squared (RSqr), Persistence
Index (PI), Percentage Error in Peak (PEP) and Coefficient of Efficiency (CE).

The remainder of this paper is structured as follows: Sect. 2 provides an introduction
to IPE and how its different variants are calculated. It also identifies some potential
pitfalls in constructing an IPE. Section 3 introduces a set of numerical experiments20

that were used to evaluate the output consistency of the variants of IPE. Section 4
discusses the error statistics of the numerical experiments and goes on to discuss the
identification of, and removal of, strongly correlated metrics within an IPE. Section 5
presents the results of the numerical experiments and provides a discussion and inter-
pretation of their meaning. Section 6 presents and evaluates an IPE standardisation25

approach based on naive model benchmarking. Section 7 summarises the findings
and maps out two potentially rewarding research directions: developing improved the-
oretical underpinnings and applying preferentially weighted combinations.
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2 Ideal point error

2.1 Metric standardisation

IPE is a dimensionless composite index which measures model performance with re-
spect to an ideal point in an n-dimensional space (where n is the number of model per-
formance evaluation metrics employed). It standardises a set of model performance5

evaluation statistics to an ideal point lying at [0, 0, 0, . . , 0]. The worst case is at [1,
1, 1, . . ,1]. The overall performance of a model in terms of IPE is measured as the
Euclidian distance from that ideal point i.e. smaller is better. If IPE is applied to a group
of model outputs computed on the same dataset, an IPE value of unity corresponds
to the worst performing model; an IPE value of zero corresponds to a perfect (ideal)10

model. Elshorbagy et al. (2010a) published an IPE index that integrated four popular
metrics (in which they referred to ME as Mean Bias, MB):

IPEA =

0.25

( RMSEi

max(MARE)

)2

+
(

MAREi

max(MARE)

)2

+
(

MEi

max|ME|

)2

+

(
Ri −1

1/max(R)

)2
1/2

(1)

for model i , where max (x) is the maximum value of the statistic x among the group
of models under test and is used as a standardisation factor of model performance15

for each individual assessment metric. The four selected error statistics, along with a
visual comparison performed between observed and predicted values, were consid-
ered to be sufficient to reveal any significant differences among the various modelling
approaches being compared with regard to their prediction accuracy.

One of the key advantages of IPE is the flexibility with which it can accommodate a20

wide range of different error metrics. However, care must be taken over the exact man-
ner in which specific metrics are integrated. Table 1 summarises how certain classes
of error measure should be standardised for integration into an IPE. These classes, re-
ferred to as S1–S5, are based on the range of potential outputs for a particular metric
(best and worst).25

1675

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/1671/2012/hessd-9-1671-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/1671/2012/hessd-9-1671-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 1671–1698, 2012

Ideal point error for
model assessment

C. W. Dawson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

It should be noted that the reported standardisation of the correlation coefficient (R)
presented in the original IPE equation (Eq. 1) was not designed to deal with negative
scores which could deliver integrated outputs that exceed the maximum upper limit for
a perfect score i.e. >1. Equation (2) thus represents an improved variant of the original
equation (here termed IPEB), which includes a more generalised and robust procedure5

for standardising R that can accommodate its full range [−1,+1]. IPEB includes a
standardised correlation coefficient that ranges from 1 (worst case) to 0 (perfect case)
rather than −2 (worst case) to 0 (perfect case) in the original equation. This results in
a significant difference in the output of IPEA and IPEB, particularly for moderate or low
correlation coefficient values. Indeed, as the results presented later show, correlation10

coefficient scores as high as 0.91 can still result in quite different scores for IPEA and
IPEB.

IPEB =

[
0.25

((
RMSEi

max(RMSE)

)2

+
(

MAREi

max(MARE)

)2

+
(

MEi

max|ME|

)2

+
(

Ri −1

min(R)−1

)2
)]1/2

(2)

2.2 The divide by zero problem

The “divide by zero problem” is a computational difficulty for IPE, particularly when15

the IPE components are replaced by benchmarks (see later discussion). For exam-
ple, using a naive forecast as a benchmark (i.e. using only antecedent values as the
prediction) could well deliver a PEP score of zero. Consequently, the denominator of
component S4 will also equate to zero. The same problem could equally apply to other
measures for which an optimum value of zero is possible e.g. ME or RMSE. Although20

such scores are unlikely to occur under standard modelling situations, the issue high-
lights potential difficulties at the extremities of some metric ranges that the modeller
should be aware of.
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2.3 Equifinal models

A further potential problem with IPE arises in the case of equifinal models which are
known to be a problem in the field of hydrology (Beven, 1993, 1996, 2001). Equifinal
models will result in IPE values close to unity for each model; indicating (possibly in-
correctly) that all the models are poor because of the manner in which IPE is derived5

relative to the worst performing model in the suite under evaluation. However, if, as
suggested later in this paper, IPE is based on a common benchmark (such as a naive
model) then all models are compared with this rather than one another and the problem
is alleviated. In addition, if IPE produces similar values for different models this would
simply highlight the equifinal nature of the models in the suite. In this situation detailed10

inspection of the corresponding hydrograph might possibly tease out subtle differences
between models.

2.4 Metric orthogonality

Dominguez et al. (2011) published a modified IPE index which integrated five popular
metrics ordered according to their power of appraisal. It was strongly argued in their15

paper that the individual statistics that are selected for inclusion in such procedures
should be orthogonal (i.e. uncorrelated), as well as comprehensive, to avoid potential
issues of information redundancy (i.e. loss of discriminatory power) and/or double-
counting (i.e. multiple accumulated measures that assess identical factors). Thus, fol-
lowing detailed analysis of numerous potential candidates, only two of the four original20

IPEA metrics were retained in their modified equation (RMSE and ME) and R was
replaced by RSqr:

IPEC =

[
0.2

((
RMSEi

max(RMSE)

)2

+
(

Rsqri −1

min(Rsqr)−1

)2

+
(

MEi

max|ME|

)2

+
(

P Ii −1

min(P I)−1

)2( PEPi

max|PEP|

)2
)]1/2

(3)

This IPE was derived from an examination of 22 different statistical metrics for each
of 60 models. Principal component analysis (PCA) was used to derive surrogate25
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measures of performance that encapsulated the information contained in all 22 sta-
tistical metrics. The first five components provided 91 % of the information content of
all 22 metrics. These orthogonal components were then examined to determine which
metrics could best represent them. The analysis led to the five metrics used in Eq. (3)
which, it should be noted, is dependent on the dataset involved.5

The use of a comprehensive PCA approach to analysing orthogonality is not always
going to be feasible, particularly if only a few models and metrics are being compared.
In such circumstances, a basic correlation analysis should be sufficient to detect re-
dundant metrics that will bias the IPE output through the identification of metrics whose
correlation coefficients are similarly high. Performing such an analysis would seem to10

be a prudent early step in all applications of IPE, and one which can quickly identify
the best number and mix of metrics to include. We, therefore, perform just such an
analysis in our evaluation of IPE later in this paper.

3 Numerical experiments

The observed record used in this study was first adopted as an instrument for perform-15

ing error testing operations in Dawson and Wilby (2001). It relates to six-hourly dis-
charge recorded in cumecs ×102 at the site of the Three Gorges Dam, on the Yangtze
River in China. The data covers 4 July 1992 to 13 August 1992 and comprises 160
observed records. The data set can be downloaded from the HydroTest website (Daw-
son et al., 2007, 2010). Further particulars on the origins of the dataset can be found20

in Dawson et al. (2002). Figure 1 provides a hydrograph of these data.
The IPE variants specified in Eqs. (1–3) are evaluated and benchmarked in this pa-

per using twelve simple data series which are compared against the observed record.
New sentence reads ”Two versions of different comparators are included, representing
large and small deviations from the observed record. The first four data series are25

generated from simple models of the observed record: two naive time–shift models
(as used by Hall, 2001); and two simple linear regression models. The other eight data
series were constructed by introducing different types of error into the observed record.
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The first four of these are based on the ones used by Hall (2001) in his evaluation of
popular goodness-of-fit indices. The second four involve the use of random numbers
sampled from a normal distribution.

The formulae used to calculate the modified records are given in Eqs. (4–9) below
(in which Q̂i is the estimated discharge):5

1. Two naive time-shift models that forecast observed discharge. This type of error
can be expressed as:

Q̂i =Qi−n (4)

in which n is the lag-time. In this case two lag times are used; a lag of one
(n= 1) representing a 6 h, 1 step-ahead naive forecast; and a lag of four (n= 4)10

representing a 24 h, 4 step-ahead naive forecast. These models are referred to
as Naive (t+1) and Naive (t+4).

2. Two simple linear regression models that use antecedent flow as a predictor for
delivering t+1 step-ahead and t+4 step-ahead forecasts of observed discharge
(and which are consistent with our naive modelling solutions Naive (t+1) and15

Naive (t+4)).

Q̂i = rnQi−n+kn (5)

where rn is the regression coefficient for time lag n (n= 1; n= 4), and kn is the
constant offset (n = 1, n = 4). These are referred to as Regression (t+1) and
Regression (t+4). For n= 1, r1 =0.999 and k1 =−0.332. For n= 4, r4 =0.92720

and k4 =18.324. Note that r1 is close to unity.

3. Scaled errors that are proportional to the magnitude of the observed flow. These
errors can be expressed as:

Q̂i =cQi (6)
1679
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where c is a constant. Two values of c are adopted in this paper to assess the
effects of varying degrees of error; 1.25 and 1.5. The latter is the upper value
applied by Hall (2001). The former represents half that applied error. These
errors are referred to as Scaled (Low) for c=1.25 and Scaled (High) for c=1.5.

4. Bias errors that increment the observed discharge by a constant amount (b) ac-5

cording to the following equation and as such equate to a vertical displacement of
the original record:

Q̂i =Qi +b (7)

In order to show how an IPE can differentiate between similar models, b is set
to values such that the RMSE of the bias errors are the same as the RMSE of10

the two scaled errors introduced in Eq. (6) above. In the case of Scaled (Low),
b= 74.3. In the case of Scaled (High), b= 148.6. These errors are referred to as
Bias (Low) and Bias (High) respectively.

5. Errors in which random noise has been added to the observed record.

Q̂i =Qi +N (8)15

in which N is a random value from a normal distribution with a mean of zero and
either one or other of two permitted standard deviations. In one case the standard
deviation adopted is one quarter of the standard deviation of the observed record.
In the second case the standard deviation adopted is half that of the standard
deviation of the observed record. These values were chosen as they represent a20

reasonable distribution of noise without generating negative flow values. These
errors are referred to as Noise (Low) and Noise (High) respectively.

6. Errors in which the random noise added to the observed record in Eq. (8)
above has been scaled by the square of the observed record. This leads to
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proportionally larger errors at high flows and lower errors at low flows.

Q̂i =Qi +NQ2
i /k (9)

in which k is a value chosen to ensure scaled errors do no lead to negative flows.
In this case, setting k to the square of the mean of the observed record (285.82)
leads to acceptable results. The two error models are referred to as Scaled Noise5

(Low) and Scaled Noise (High) coinciding with the amount of random noise added
from Eq. (8) above.

Figure 2 provides error plots of each of these data series compared with observed
flow. The figures show similar performance of the naive and regression models with
the two models based on one step-ahead prediction demonstrating low errors across10

the range of the observed record. The scaled errors show, not surprisingly, a linear
increase in error as observed flow increases, while the bias errors show consistent
error across the same range. The two noise models (low and high) show a reasonably
even spread of error across the range of the observed record, while the scaled noise
displays heteroscadastic error.15

4 Interpretation of error statistics

4.1 Error statistics of the data series

HydroTest statistics for each data series and all relevant evaluation metrics are pro-
vided in Table 2. The analysis reveals no overall “winner” (or “loser”) in the sense of
one data series possessing a superior (or inferior) result for all seven metrics, provid-20

ing sound grounds for the application of an IPE. For example, Bias (High) returns R
and RSqr scores of one (the maximum score) but is identified as the poorest model
according to four other statistics (ME, RMSE, MARE and PI). Similarly, Scaled (High)
has unity scores for RSqr and R but the worst score for RMSE and PI. Conversely,
although Naive (t+1) possesses the two best scores for PEP and PI, it does not come25

out on top according to other measures.
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There are a few notable points to be made about these results. First, note that
both Naive models return PEP values of zero (the best score). This is because both
are generated directly as a time-shift of the observed data, and consequently have
the same peak score as the observed record. This brings into question individual
error measures such as these that can return good or perfect results for very simplistic5

models and will often also create a divide by zero problem if used as benchmarks in
an IPE. Secondly, although most of the error statistics return similar results for the
Naive (t+1) and Regression (t+1) models, there is a notable difference in the ME
score for these two models (0.7 and 0.08 respectively). Clearly, bias is reduced as
a result of the k1 = −0.332 factor since all other factors are more or less identical.10

Moreover, because this measure is calculated using signed differences between the
observed and modelled record, there is also a danger that, even for a poor model,
substantial differences will cancel one another out leading to good results. Once again,
this highlights the dangers of using individual measures that may provide results which
are contradictory to what is actually being measured.15

Another notable point from these results is that despite returning perfect scores for
RSqr and R, the scaled and bias errors return very poor PI, ME and RMSE scores
compared with the other data series. RSqr and R are not good at identifying scaled and
bias errors when evaluating models. All these results emphasise that individual error
statistics cannot be relied upon to provide an objective measure of model performance.20

It is only when error statistics are compared or combined that an overall picture of
model performance emerges.

4.2 Identification and removal of non-orthogonal metrics

As noted earlier, provided sufficient data are available, it is possible to undertake a
cross-correlation analysis between the error metrics under consideration for inclusion in25

an IPE in order to identify redundancy. Table 3 provides just such an analysis based on
the 12 experimental data series used in this study. These results would tend to indicate
some redundancy between ME, RMSE, MARE and PI. However, in this particular case
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study the data series have been artificially generated and, as a consequence, a number
of the data series present near identical results according to many of the metrics. For
example, six of the twelve return almost identical RSqr values, and the bias errors
were derived in such a way as to have the same RMSE scores as the scaled errors. If
these data represented genuine models in a hydrological study there would be some5

argument for removing ME and PI from IPEC as they are closely related to RMSE which
would be retained. Retaining ME and PI may lead to additional emphasis being placed
on metrics of this type, perhaps swamping the contribution of other retained metrics
such as RSqr and PEP.

In this case, because IPEC is based on a comprehensive study of 60 models we10

will retain all the components for further analysis. A study of redundancies amongst
IPE components is an important issue and should be the subject of further research.
Without such an analysis it is reasonable to accept an IPE such as IPEC which is based
on a sound hydrological analysis.

4.3 Evaluating IPE variants15

The integrated IPE (A–C) scores for each data series are compared and contrasted in
Table 4. The effects of switching from IPEA to IPEB given varying strengths of corre-
lation coefficient can be observed. For example, for those data series returning cor-
relation coefficient scores of 1 (Scaled (Low), Scaled (High), Bias (Low), Bias (High))
there is no change in the scores of IPEA and IPEB. The IPEA and IPEB scores are20

also the same for the Naive (t+1) and Regression (t+1) models which both return
correlation coefficient scores of 0.99. However, in the case of the Naive (t+4) and Re-
gression (t+4) models, both have correlation coefficient scores of 0.91 and the switch
has led to much higher IPE scores: IPEA is 0.15 and 0.14 respectively; IPEB is 0.40
and 0.40. This emphasises the divergence of the standardised correlation coefficients25

and highlights the sensitivity of IPE to the way in which components are integrated.
Table 4 also presents some interesting differences when moving from IPEB to IPEC

which consists of an orthogonal and comprehensive set of error measures. Although
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there appear to be only minor changes in IPE scores two things should be noted.
First, IPE values range from 0 (for a perfect model) to 1 (for the worst model), so
small absolute changes in IPE score (such as 0.43 to 0.36 for the Bias (Low) error)
can represent a significant shift in individual overall scoring. Second, the associated
rankings of the data series relative to one another can also change when switching5

from IPEB to IPEC – notably in the lower half of the scorings. The four top rankings in
contrast remained unchanged. This means that an IPE integrated assessment is both
metric and model dependent. Selection of either will control the final tally, and, if it is
to be of greater applicability, for example to support cross-study analysis, meaningful,
benchmarking operations are required.10

The final point to note with this set of results is that despite having the same RMSE
(as defined in the previous section), IPE scores for Scaled error and Bias error are
different. This is primarily due to differences in PEP; such that a single local assess-
ment statistic is a controlling item. In so doing it provides a cautionary justification for
a combined error measure such as IPE which can be used to tease out the differences15

among apparently equivalent models in a process that could easily be perverted.

5 Standardising IPE using naive model benchmarks

So far IPE has used the worst performing statistic from the suite of error models under
evaluation as the basis for standardising its individual metrics (scaling to one for the
worst model, and to zero for a perfect model). Thus model performance rankings20

may differ depending on each particular combination of selected metrics and the suite
of models included. This arbitrariness is not common hydrological practice, whereby a
benchmark model is usually defined a priori, and is independent of comparator models.
CE (Nash and Sutcliffe, 1970), for example, compares model performance against a
primitive model, comprising the mean of the observed discharge time series of the25

calibration period as output at all points. IPE model skill is, in contrast, evaluated
against a moving target – something that changes according to the mix of models
involved, such that reported numerical findings cannot be transferred to other studies.
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In order for IPE to be applicable across real-time, flood forecasting studies, IPE could
also be standardised using a simple naive model benchmark. A number of candidate
baselines are available from the models introduced in this study. One such benchmark
is the naive (t+n) model which simply predicts the current value using a value recorded
at n previous time steps (a persistence index baseline). The need for n to be consis-5

tent and determined by each case study in question is axiomatic. It is also possible to
provide a simple linear model benchmark, obtained from least squares linear regres-
sion, for the purposes of assessing the extent to which a particular problem is linear or
near-linear and so does not require a complex non-linear modelling solution (Abrahart
and See, 2007; Mount and Abrahart, 2011).10

The IPEA and IPEB variants cannot be adapted for naive model standardisation since
IPEA generates scores that exceed unity, whilst IPEB would encounter a division by
zero error in the case of PEP which will always produce a zero if a naive t+n bench-
mark model is included. IPEC also uses PEP and so should be similarly discarded.
However, given that it was constructed by means of analytical methods and represents15

an algorithm structured according to explanatory power, and PEP is the least influ-
ential input in IPEC, PEP could be dropped from the equation to produce the variant
IPED; thereafter calculated using the four remaining measures (and consequently the
overall weighting factor is 0.25, not 0.2):

IPED =

[
0.25

((
RMSEi

max(RMSE)

)2

+
(

Rsqri −1

min(Rsqr)−1

)2

+
(

MEi

max|ME|

)2

+
(

P Ii −1

min(P I)−1

)2
)]1/2

(10)20

IPED will therefore be studied in which:

1. IPEDW uses each “worst case” individual statistic as a benchmark (as before).

2. IPED1 uses the naive one-step-ahead prediction as the basis for standardisation
(Naive (t+1)).

3. IPED4 uses the naive four-step-ahead prediction as the basis for standardisation25

(Naive (t+4)).
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The results of this analysis are provided in Table 5. In this table, the benchmark statis-
tics are used to define the worst case scenario against which everything is measured
and standardised. For IPED1 and IPED4 we are measuring performance against a naive
baseline – any data series which performs worse than these benchmark solutions can
be considered particularly poor.5

Table 5 presents some interesting results using each of the three benchmarked mea-
sures of IPED. It depicts similar rankings to those presented earlier for IPEA, IPEB and
IPEC, with the best four and worst two data series being ranked in the same position. In
this case the Regression (t+1) and Naive (t+1) models are consistently the strongest
of the data series assessed for IPEDW, IPED1 and IPED4; and Scaled (High) and Bias10

(High) errors are consistently the worst.
Although the IPE scores for each of the baselines are quite different for each of

the scaled and bias errors, IPE scores of Scaled (Low) and Bias (Low); and Scaled
(High) and Bias (High); are similar for each baseline. This, doubtless, is a reflection
of dropping PEP. While there is some difference between these scores, and some of15

the rankings change as a consequence, there is some argument for modifying IPE to
better differentiate between such errors when evaluating models.

Using the naive one step-ahead model (Naive (t+1)) as the baseline (IPED1) identi-
fies some problems with this particular choice. In this case only the Regression (t+1)
has an IPE score less than unity. Having scores that are no longer confined to a com-20

mon upper range potentially loses something useful. This analysis highlights the signif-
icance of selecting an appropriate benchmark with which to evaluate all other models.
In this case the naive, one-step-ahead model would be an inappropriate option as a
benchmarking threshold for rejecting models that are predicting with a longer lead time
(such as Regression (t+4)).25

The benchmark, against which models are evaluated, should be chosen with the
same lead time; otherwise the test is “unfair” and not a true reflection of the accuracy
of the models under scrutiny. With this point in mind, a more appropriate baseline might
be to use the naive four step-ahead model (Naive (t+4)) – represented as IPED4. In
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this case the simple regression models (Regression (t+1) and Regression (t+4)); the
naive one step-ahead model (Naive (t+1)); and the Noise (Low) and Scaled Noise
(Low) errors are all performing better than the baseline. However, in this case it would
be wrong to assess the performance of the Regression (t+1) and Naive (t+1) models
against this benchmark as they have a shorter lead time and are thus not facing a “fair”5

test. The other data series presented all have IPE scores greater than unity so are all
worse than this simple case.

It is also possible to turn this argument on its head; if t+n is seen as a sliding
scale, it is possible to offer a series of degraded benchmarks that can be used to
quantify the moment at which a particular series crosses a particular threshold i.e. to10

establish that the model under test is no better than a t+n naive prediction. This form of
assessment may offer rewards in model development operations since the ‘no change
scenario’ offers a severe challenge for non-empirical modelling solutions in which the
major outcome is greater scientific understanding and not necessarily higher prediction
accuracy.15

The relative order of the rankings in Table 5 is also worthy of comment. For the
best (those ranked in the top four each time) and worst (those ranked 11th and 12th
each time) performing data series, there is no change in their relative position from one
baseline to the next. However, this is not the case for their absolute IPE scores. For
example, the Regression (t+1) model is ranked first for all three baselines, although its20

IPE scores range from 0.04 (for IPEDW) to 0.87 (for IPED1). These results emphasise
the fact that IPE can provide a useful relative measure of performance within a study
but, to be applicable across studies, a common benchmark must be defined in terms
of something meaningful.

6 Conclusions25

This paper has presented an evaluation of the newly introduced composite index for
assessment of model performance known as Ideal Point Error. IPE provides a single
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point alternative to multiple, possibly contradictory, error measures. The discussion
has addressed some of the issues associated with the use of IPE. The essence of
IPE is standardisation of measured error statistics relative to some agreed set of end
markers: such that the selection of a suitable point of reference is a key factor as well
as the constituent error metrics. Originally this was established as the worst perform-5

ing model in the suite of models under scrutiny. However, in such cases, IPE equates
to a moving target which is dependent on the model combination used. Hence, re-
sults and conclusions drawn from the analysis are unique to the set of models used
in calculating IPE. A more generic use of IPE has been discussed in which a naive
t+n step-ahead model is adopted for benchmarking purposes. A simple linear model,10

such as the regression model used in this study, could also be used as a more so-
phisticated benchmark. However, extending the benchmark to ever more sophisticated
levels would make cross-comparisons between studies difficult as there is no guar-
antee the benchmark was being equally derived or applied in each case. Basing the
benchmark on one or more naive t+n step-ahead predictions provides a recognised15

standard that can be consistently applied across different studies, for broader model
evaluation purposes.

An area of further work is to examine the interplay between the different errors in-
troduced in this paper and their performance as measured by different error statistics
(examining further the themes discussed by Hall, 2001). For example, scaled and20

bias errors were introduced to the observed record in this study with equal RMSE. In
some cases an integrated IPE provided reasonable differentiation between these er-
rors, in other cases less so. The real-world hydrological relationship between errors
and residuals, the latter expressed in terms of theoretical structures and distributions,
when applied to data sets with different characteristics could also be explored.25

Another area of further work is to explore the relative weightings of individual statis-
tics within an IPE. In the equations presented here, each error measure used in
each IPE is equally weighted. This does not have to be the case as more em-
phasis can be placed on individual components depending on the nature of the
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modelling requirements. For example, when evaluating water resources models, an
IPE that places more emphasis on low flow statistics (such as MSRE, or MSLE) may
be preferable.
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Table 1. Fivefold classification of potential components used in IPE.

Category Examples Best Worst IPE Component

S1 RMSE, MARE 0 +∞ S1
max(S1)

S2 RSqr 1 0 S2−1
min(S2)−1

S3 R 1 −1 S3−1
min(S3)−1

S4 PEP, ME 0 ±∞ S4
max|S4|

S5 CE, PI 1 −∞ S5−1
min(S5)−1
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Table 2. Error statistics for each data series (“best” result in bold, “worst” result in italic for each
statistic).

Error Model ME RMSE PEP MARE RSqr PI R

Naive (t+1) 0.70 9.24 0.00 0.02 0.99 0.00 0.99
Naive (t+4) 2.85 35.01 0.00 0.08 0.83 −13.29 0.91
Regression (t+1) 0.08 9.21 −0.17 0.02 0.99 0.01 0.99
Regression (t+4) 0.13 34.39 −3.66 0.08 0.83 −12.79 0.91
Scaled (Low) 71.38 74.30 25.00 0.25 1.00 −63.38 1.00
Scaled (High) 142.75 148.60 50.00 0.50 1.00 −256.50 1.00
Bias (Low) 74.30 74.30 14.77 0.28 1.00 −63.38 1.00
Bias (High) 148.60 148.60 29.54 0.56 1.00 −256.50 1.00
Noise (Low) −0.59 20.20 6.46 0.06 0.94 −3.76 0.97
Noise (High) 2.07 39.92 5.69 0.12 0.80 −17.58 0.90
Scaled Noise (Low) −3.79 24.86 18.03 0.06 0.91 −6.21 0.96
Scaled Noise (High) −0.30 48.09 29.98 0.11 0.77 −25.97 0.88
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Table 3. Cross correlation between metrics based on the experimental data series.

ME RMSE PEP MARE RSqr PI R

ME 1.00
RMSE 0.97 1.00
PEP 0.76 0.82 1.00
MARE 0.98 0.99 0.78 1.00
RSqr 0.59 0.37 0.27 0.45 1.00
PI −0.96 −0.97 −0.79 −0.97 −0.45 1.00
R 0.60 0.39 0.29 0.47 1.00 −0.46 1.00
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Table 4. Integrated assessments of error models.

IPE Values Rank

Data series IPEA IPEB IPEC IPEA IPEB IPEC

Naive (t+1) 0.04 0.04 0.04 2 2 2
Naive (t+4) 0.15 0.40 0.36 6 6 5
Regression (t+1) 0.04 0.04 0.04 1 1 1
Regression (t+4) 0.14 0.40 0.36 5 5 6
Scaled (Low) 0.41 0.41 0.40 9 7 8
Scaled (High) 0.83 0.83 0.89 11 12 12
Bias (Low) 0.43 0.43 0.36 10 8 7
Bias (High) 0.87 0.87 0.82 12 12 11
Noise (Low) 0.09 0.14 0.14 3 3 3
Noise (High) 0.18 0.46 0.41 7 9 9
Scaled Noise (Low) 0.10 0.21 0.25 4 4 4
Scaled Noise (High) 0.20 0.54 0.54 8 10 10
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Table 5. Results for IPED analysis of data series.

IPE Values Rank

Data Series IPEDW IPED1 IPED4 IPEDW IPED1 IPED4

Naive (t+1) 0.04 1.00 0.19 2 2 2
Naive (t+4) 0.40 10.37 1.00 8 6 6
Regression (t+1) 0.04 0.87 0.14 1 1 1
Regression (t+4) 0.40 9.98 0.85 7 5 5
Scaled (Low) 0.37 60.59 12.76 5 9 9
Scaled (High) 0.85 165.01 26.68 11 11 11
Bias (Low) 0.37 62.36 13.26 6 10 10
Bias (High) 0.87 167.63 27.64 12 12 12
Noise (Low) 0.14 3.46 0.38 3 3 3
Noise (High) 0.45 12.48 1.10 9 7 7
Scaled Noise (Low) 0.21 5.86 0.83 4 4 4
Scaled Noise (High) 0.53 16.53 1.34 10 8 8
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Fig. 1. Hydrograph of observed flow from Three Gorges Dam, Yangtze River, China.
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Fig. 2. Caption on next page.
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Fig. 2: Error plots of each data series with respect to observed flow (error in cumecs x 102) 
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Fig. 2. Error plots of each data series with respect to observed flow (measurements
in cumecs ×102).
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